[Resolved]  GlowTouch Technologies Pvt Ltd — Worst IT Company in the World

Glowtouch Technologies Pvt Ltd. or Diya Systems Pvt Ltd located in Mangalore.

This company recruits many people for US Onsite and later in a permanent position in Mangalore.
I suggest all IT people not to join this company as it would really screw up your career. These people will send you to US by taking a bond of 2 years and the duration you spend in US is not more than 2-3 months. There will not be any kind of notice period mentioned in the offer letter or appointment letter but during our resignation they simply say 2 months notice period. If a person fails to pay or continue till those two months notice period the company will not release any of the documents.

They are well known for their false references to any employees. They dont give a proper feedback on any of the employees who leave the company even they properly resigned, which will result in the employee cant get job anywhere.

The main source of their projects is through getfreelancer.com and they are well known for giving short deadlines resulting in the resources getting pressurised. Though we dont have good projects to work and good oppurtunities to grow we cannot leave the company as the company dosent want us to leave the company. The Management suddenly reduces your salary and says that it is due to some performance review which means though you recieve a salary of 20K in your previous company and here you were promised of some 35 K and when you have undergone this kind of performance review your salary goes below the salary you previously drawn.

They deduct the tax from salaries every month but they dont pay to the Government, except for few of the employees. Since most of the employees will be leaving their jobs in middle of the year. There is no professional ethics in this company. This is the IT company with full of politics.

There is one and only head for all the management aspects Mr. Shyam Prasad Hebbar. He is well known for not answering any of the reference calls, mails sent by other recruiters to enquire about our work in this company.

So My dear co developer beware of joining in this company because once you joined you will never come outside decently. You will never enjoy the work in the company as they get very small projects of 200 or 300 hours. They say that you will get 2 Saturdays in a month as holiday but God knows how many Saturdays you really take a leave. Every day on an average a resource unofficially works for 18 hours (exempted for local people).
Was this information helpful?
No (0)
Yes (1)
Aug 14, 2020
Complaint marked as Resolved 
 
127 Comments

Comments

Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.
Diya Systems Pvt. Ltd. located in Mangalore gives Customer Support through email and chat for an esteemed US based web hosting company. It sucks blood of an agent who working for this project. I have been worked for an email and chat support agent for more than two and half years. Especially, the training team torches an agent. Team doesn't have to do any work. So, they eating agents head by performing weekly trainings.

Also, I would like to complain against Floor managers. In the starting age of company, the targets for an email agent was 24 emails. Now, it has been increased to 33 emails per day. I mean an agent should need to handle 33 email contacts within 7 hours 30 minutes with tightened QA!!! As my experience for one and half years as an email agent, an agent can do 24 - 26 emails without any failures in Quality Assurance test. Henceforth, I would like to request you NOT joining to DIYA Systems.

Third complaint is against Management. If an agent who worked for more than 3 years will start getting irritated by the management. The main reason for this is management need to pay more than 10K salary for senior agents. In the meantime they will get freshers who willing to work just for 4-5K.

Hats off DIYA! what a worst BPO company!!

Now, you decide guys, which is better!
I totally agree with swamy. This is what happens in GT. The management people are not from management background. They dont know to manage people. They treat employees like machines. Main in management is Mr. Hebbar who is an undergraduate.

STUS projects private limited — To know my first name and surname

I have my pan card. I wish to make e-filing of returns. could not resgister for the same as i could not assess the first name and surname.

name on card: SAYEE PRIYADARSHINI M B
Fathers name: MOSUR PARASURAMAN BABU

PAN NO: BREPS5198D
D.O.B: 20/05/1985
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.
The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[36]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogenous, [1] supporting the Cosmological Principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican Principle, that the Earth is not in a central position, on a cosmological scale.[37] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.


Cosmic microwave background radiation
Main article: Cosmic microwave background radiation

WMAP image of the cosmic microwave background radiationDuring the first few days of the universe, the universe was in full thermal equilibrium, with photons being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the universe expanded, it cooled to a temperature at which photons could no longer be created or destroyed. The temperature was still high enough for electrons and nuclei to remain unbound, however, and photons were constantly "reflected" from these free electrons through a process called Thomson scattering. Because of this repeated scattering, the early universe was opaque to light.

When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms, radiation decoupled from matter when nearly all the electrons had recombined, at the epoch of last scattering, 379, 000 years after the Big Bang. These photons make up the CMB that is observed today, and the observed pattern of fluctuations in the CMB is a direct picture of the universe at this early epoch. The energy of photons was subsequently redshifted by the expansion of the universe, which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photons now fall into the microwave region of the electromagnetic spectrum. The radiation is thought to be observable at every point in the universe, and comes from all directions with (almost) the same intensity.

In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation while conducting diagnostic observations using a new microwave receiver owned by Bell Laboratories.[17] Their discovery provided substantial confirmation of the general CMB predictions—the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 K—and it pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were awarded a Nobel Prize for their discovery.

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), and the initial findings, released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[18] John C. Mather and George Smoot were awarded Nobels for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001, several experiments, most notably BOOMERanG, found the universe to be almost spatially flat by measuring the typical angular size (the size on the sky) of the anisotropies. (See shape of the universe.)

In early 2003, the first results of the Wilkinson Microwave Anisotropy satellite (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. This satellite also disproved several specific cosmic inflation models, but the results were consistent with the inflation theory in general, [19] it confirms too that a sea of cosmic neutrinos permeates the universe, a clear evidence that the first stars took more than a half-billion years to create a cosmic fog. Another satellite like it will be launched within the next few years, the Planck Surveyor, which will provide even more accurate measurements of the CMB anisotropies. Many other ground- and balloon-based experiments are also currently running; see Cosmic microwave background experiments.

The background radiation is exceptionally smooth, which presented a problem in that conventional expansion would mean that photons coming from opposite directions in the sky were coming from regions that had never been in contact with each other. The leading explanation for this far reaching equilibrium is that the universe had a brief period of rapid exponential expansion, called inflation. This would have the effect of driving apart regions that had been in equilibrium, so that all the observable universe was from the same equilibrated region.


Abundance of primordial elements
Main article: Big Bang nucleosynthesis
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium and lithium-7 in the universe as ratios to the amount of ordinary hydrogen, H.[27] All the abundances depend on a single parameter, the ratio of photons to baryons, which itself can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for ²H/H, about 10−4 for ³He/H and about 10−9 for 7Li/H.[27]
Hubble's law and the expansion of space
Main articles: Hubble's law and metric expansion of space
See also: distance measures (cosmology) and scale factor (universe)
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[1]


where

v is the recessional velocity of the galaxy or other distant object
D is the comoving proper distance to the object and
H0 is Hubble's constant, measured to be 70.1 ± 1.3 km/s/Mpc by the WMAP probe.[22]
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican Principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedman in 1922[4] and Georges Lemaître in 1927, [5] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson and Walker.

The theory requires the relation v = HD to hold at all times, where D is the proper distance, v = dD / dt, and v, H, and D all vary a

M/s.Omega Equipment and Projects — Confused about journey

Hai Yatra, I had booked Air tickets in Chennai to Jaipur for 3 Adults and 1 Child Airline PNR No. KCXPZK ( Chennai to Delhi ) and KCXPZK ( Delhi to Jaipur)

My confuse is I booked ticket for Chennai to Jaipur but ticket printing comes Chennai to Delhi and Delhi to Jaipur. How can I shift one and another flights. Please tell us how is it possible for us to shifting.

quantum asia private limited — un neccessary messages and calls

we have received wrong calls like advetisement messages, caller tune calls, Business calls.Please restrict in this calls for my number.please do the needful.

Thanking You,
YS. Sowbhagya
w/o YS.Vivekananda Reddy
MLC Kadapa.
I worked for this company for almost 1.5 years. I cant even think of working ofr this company again. I better be jobless than working for this company. They dont pay well. Shyam cheated me with my last month salary which he had promised to pay.
Nice blog guys thanks for the information about this fraud company..i was just thinking to join that company..thanks again lol
Guys there is something funny. The lady who commented in this blog in support of GT Management herself faced lot of problems from the GT last week. She was asked to pay the entire one month salary even after serving one month notice period. I hope she herself share her experience here with all you guys.

PHY Market Research and Technologies Pvt. Ltd. — Not getting due salary

Dear sir,

I Hare Krishnam S/o Sh. Rajdeo Sah workd 2 month as a XML Programmer on the monthly renumation of 14000/- per month. at PHY Market Research and Technologies Pvt. Ltd. but they are not giving me any salary on this period.

I always requested him to give me the salary, but they are always saying there is no any due from me.

I have the offer letter also.

so, kindly do the needful action, I will be very thankful for you.
PHY Market Research and Technologies Pvt. Ltd. a un-reputted company.

thanks for your complain, i knew about this company. Otherwise i am going to give him a contract for market survey in Kolkatta. I will never give any work form right now. DAM THE THE COMPANY PHY Market Research and Technologies Pvt. Ltd.
Well my friends, I am at the other end of Glowtorch sending me email after email after email ... about writing a website for me.
Well I didn't ask for this offer, so this is harassment and if the emails don't stop soon, I will be going to officially complain.
Take note that if someone doesn't respond to an email after 5 of them, being sent then the message is clear - stop sending the emails. I am utterly sick of them and utterly sick of the name of GlowTouch - they sure do TOUCH you TOO much.
This company has poor customer service, poor quality of work and more. Apparently, they are more focused on selling and getting the customers money than in taking care of the customers needs.
Terrible experience. Dont waist your money with them.
We hired Glowtouch to write a web app for us in Nov 2007. It was scheduled to be completed in June 2009. They worked on it thru Nov 2010 and failed to complete it. When we moved to a different company, our application was suddenly broken in several places, with many pages not functioning properly. We had to pay the next company over 10K just to get back on track. Glowtouch ripped us off for almost 100K. They do not take responsibility for what they do. They ran my company into the ground. Beware of off-shore development. John B.

Page Point pvt ltd. — Fraud company & doesn't pay salary to employee

Hi All,

I want to register a complaint against page point pvt. ltd as well as would like to inform all job seekers not to joinn this fraud, actually it is an agency which runs call centers for BSNL, Airtel, Kotak Mahindra.
They forces you to cheat with customers by giving them wrong info. Unfortunately I joined this call center due to some reasons & worked for a month but they didn't give salary, same thing happened with some other employees. Obviously I left this call center in next month. I don't know whether I'll get any compensation but I'd be happier if I could save job seekers from becoming a victim of .

web design — worst performance for projects

Dear all,

First you need to know, company owned by person doesn't know software or domain idea itself, they simply money at end of the day, just have two or three employees with some domain knowledge and manage with them, company have 10 employees with full of politics who heading the politics called T. Raj Sharma. One more guy is there in the company marketing field Stupid sundar who will ring the bell according to Raj Sharma. There is no single percent growth in the company still now and never happen in upcoming years, there is CEO in USA nice lady but here Raj Sharma is fooling her from INDIA. You cannot see that much politics in Indian Goverment politics itself. Never Ever growth after coming from this company, still now i too not got good job and search for the job, Since still there is no good project in the company, just designing work and normal web development, they cannot able to take good project also that much skilled Marketing Staff Sundar handling the marketing team. Community Problem also main Problem in this company and i faced it more but they its software concern. There is no PF also in the company.
I dont knw what is happening?which part is true?

fashion planet — deactivate the bsnl games on demand

my phone no.[protected].i request you to de-activate the bsnl games on damand..very kindly asking you to cancel immediately the games on damand and if you can inform by phone or infrom me

Post your Comment

    I want to submit Complaint Positive Review Neutral Comment
    code
    By clicking Submit you agree to our Terms of Use
    Submit

    Contact Information

    GlowTouch Technologies Pvt Ltd
    India
    File a Complaint

    New Member Registration

    The following information is hidden from other customers and is only visible to representatives of the company you are complaining about. This step is optional and can be skipped below.

    New Member Registration

    Already a Consumer Complaints member? Log in now
    •            
      or

    New Member Registration

    A confirmation email was sent to "".
    To confirm your account, please click the link in the message.

    If you don't see the email in your Inbox, please check your Spam box.

    User Login

    Not a member of Consumer Complaints? Register now.
    •            
      or
    Loading, please wait...


    Your password has been sent to the specified email address. Log in

    User Facebook Login

    GDPR